About us   Registration   Site map    
 
         
   
      New user|Forgot password  
 
   
 
 
Select Your Country to check the Schedule for this Course
Country:  
Time Zone:
   
PAYMENT METHODS
PAYPAL GOOGLE CHECKOUT
Course Name Course Code
Data wareHouse concepts 90
Course Contents

1)      What is a Data Warehouse ?

2)       Subject-Oriented- Characteristics of a Data –Warehouse

3)       Integrated - Characteristics of a Data Warehouse

4)      Non-volatile - Characteristics of a Data Warehouse

5)      Time Variant - Characteristics of a Data Warehouse

6)      Need for Data Warehousing

7)      OLTP Vs Warehouse

8)      Logical Transformation of Data in  Data Warehouse

9)      Do we need a separate database for OLTP and OLAP?

10)  Warehouse Architecture

11)  Components of a Data Warehouse Architecture

12)  Source Databases – Characteristic

13)  Different Kinds of information need

14)  Operational Data Store

15)  Data Management

a) Data Profiling

b) Data Integration

c) Data Quality

d) Data Enrichment

16)  Data Marts

17)  What Is a Data Mart ?

18)  What Is a Data Mart ?

19)  Why Build Data Marts ?

20)  Integrated Data Marts

21)  Difference between Data Warehouse and Data Mart

22)  Data Warehouse first or Data Mart first

23)  Data Warehouse implementation

24)  Data Warehouse implementation choices

25)  Bottom Up Design

26)  Combined approach

27)  OLTP Vs ODS Vs DWH

28)  Benefits of Data Warehouse

29)  BI Component Framework

30)  Issues and Challenges in Building DWH

31)  Business use of DWH and BI

32)  Data Modeling

33)  Importance of Data Modeling

34)  Modeling Techniques

35)  ER Modeling

36)  Dimension Modeling

37)  What is an Entity?

38)  What is an Attribute?

39)  Entity Types

40)  What is a relationship between Entities?

41)  Primary Key relationship

42)  Foreign Key relationship

43)  Limitations of ER modeling

44)  Fact, Measure, Dimension

45)  Cubes

46)  Factless Fact Tables

47)  Aggregate Fact Tables

48)  Visualization of Dimension Model

49)  Advantages of Dimension Model

50)  Schema

51)  Star schema

52)  Snowflake schema

53)  ETL process

54)  Why ETL is required?

55)  ETL process components

56)  ETL process schematic

57)  ETL process challenges

58)  OLAP

59)  OLAP features

60)  Types of OLAP

61)  OLAP operations

62)  Data Mining

 

PAYMENT METHODS
PAYPAL GOOGLE CHECKOUT